Effect of Phenolics from Aeonium arboreum on Alpha Glucosidase, Pancreatic Lipase, and Oxidative Stress; a Bio-Guided Approach

莲花掌酚对α-葡萄糖苷酶、胰腺脂肪酶和氧化应激的影响;生物引导方法

阅读:15
作者:Marwah M Alfeqy, Seham S El-Hawary, Ali M El-Halawany, Mohamed A Rabeh, Saad A Alshehri, Aya M Serry, Heba A Fahmy, Marwa I Ezzat

Abstract

Metabolic syndrome (MetS) is a global issue affecting over a billion people, raising the risk of diabetes, cardiovascular disorders, and other ailments. It is often characterized by hypertension, dyslipidemia and/or obesity, and hyperglycemia. Chemical investigation of Aeonium arboreum (L.) Webb & Berthel led to the isolation of six compounds, viz. β-sitosterol, β-sitosterol glucoside, myricetin galactoside, quercetin rhamnoside, kaempferol rhamnoside, and myricetin glucoside. Interestingly, A. arboreum's dichloromethane (DCM), 100 and 50% MeOH Diaion fractions and the isolated compound (quercetin-3-rhamnoside) revealed potent α-glucosidase inhibitory activity, especially 50% Diaion fraction. In addition, they also showed very potent antioxidant potential, especially the polar fractions, using DPPH, ABTS, FRAP, ORAC, and metal chelation assays. Notably, the 50% Diaion fraction had the highest antioxidant potential using DPPH and ORAC assays, while the 100% Diaion fraction and quercetin-3-rhamnoside showed the highest activity using ABTS, FRAP, and metal chelation assays. Also, quercetin-3-rhamnoside showed a good docking score of -5.82 kcal/mol in comparison to acarbose. In addition, molecular dynamic stimulation studies illustrated high stability of compound binding to pocket of protein. Such potent activities present A. arboreum as a complementary safe approach for the management of diabetes mellitus as well as MetS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。