Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission

小胶质细胞活化引发星形胶质细胞介导的兴奋性神经传递调节

阅读:6
作者:Olivier Pascual, Sarrah Ben Achour, Philippe Rostaing, Antoine Triller, Alain Bessis

Abstract

Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。