Real-time six-dimensional spatiotemporal tracking of single anisotropic nanoparticles in live cells by integrated multifunctional light-sheet nanoscopy

通过集成多功能光片纳米显微镜对活细胞中的单个各向异性纳米粒子进行实时六维时空跟踪

阅读:7
作者:Yingying Cao, Seungah Lee, Kyungsoo Kim, Jong-Young Kwak, Seong Ho Kang

Abstract

An integrated multifunctional light-sheet nanoscopy (iMLSN) combined with differential interference contrast, total internal reflection, epifluorescence, a super-resolution radial fluctuation-stream module, and a wavelength-dependent light sheet was developed to simultaneously realize the six-dimensional (6D) vector-valued (three coordinates + rotational dynamics (azimuth and elevation angles) + transport speed) tracking of anisotropic nanoparticles in single living cells. The wavelength-dependent asymmetric scattering of light by gold nanorods was used to trigger signals depending on the polarizer angle, and real-time photo-switching was achieved by turning the polarizer, obtaining a series of super-resolution images, and tracking using different polarization directions and two channels. This technique was employed to directly observe native gold nanorods (AuNRs; 5 nm diameter × 15 nm length) and surface-functionalized AuNRs during their endocytosis and transport at the upper and attaching side membrane regions of single living cells, revealing that the AuNRs bound to the membrane receptors. The nanorods were subsequently internalized and transported away from the original entry spots. Detailed dynamic information regarding the rotation properties and endocytosis speed during the transmembrane process was also acquired for each region. The developed technique can be considered useful for the real-time monitoring of intracellular transport at various regions in single living cells, as well as for 6D vector-valued non-fluorescence super-resolution imaging and tracking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。