Improvement of Butamben Anesthetic Efficacy by the Development of Deformable Liposomes Bearing the Drug as Cyclodextrin Complex

开发以环糊精复合物形式载药的可变形脂质体以提高丁氨苯丁酯的麻醉效果

阅读:5
作者:Paola Mura, Francesca Maestrelli, Marzia Cirri, Giulia Nerli, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Natascia Mennini

Abstract

This work was aimed at enhancing butamben (BTB) anesthetic efficacy by the "drug-in cyclodextrin (CD)-in deformable liposomes" strategy. In the study, phase-solubility studies with natural (α-, β-, γ-) and derivative (hydroxypropyl-α-and β-, sulfobutylether-β, methyl-β) CDs evidenced the highest BTB affinity for βCD and its derivatives and indicated methyl-βCD (RAMEB) as the best carrier. Drug-RAMEB complexes were prepared by different techniques and were characterized for solid-state and dissolution properties. The best BTB-RAMEB product was chosen for entrapment in the aqueous core of deformable liposomes containing stearylamine, either alone or with sodium cholate, as edge activators. Double-loaded (DL) liposomes, bearing the lipophilic drug (0.5% w/v) in the bilayer and its hydrophilic RAMEB complex (0.5% w/v) in the aqueous core, were compared to single-loaded (SL) liposomes bearing 1% w/v plain drug in the bilayer. All vesicles showed homogeneous dimensions (i.e., below 300 nm), high deformability, and excellent entrapment efficiency. DL-liposomes were more effective than SL ones in limiting drug leakage (<5% vs. >10% after a 3 months storage at 4 °C). In vivo experiments in rabbits proved that all liposomal formulations significantly (p < 0.05) increased the intensity and duration of drug anesthetic action compared to its hydroalcoholic solution; however, DL liposomes were significantly (p < 0.05) more effective than SL ones in prolonging BTB anesthetic effect, owing to the presence of the drug-RAMEB complex in the vesicle core, acting as a reservoir. DL liposomes containing both edge activators were found to have the best performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。