Halomonas ventosae JPT10 promotes salt tolerance in foxtail millet (Setaria italica) by affecting the levels of multiple antioxidants and phytohormones

Halomonas ventosae JPT10 通过影响多种抗氧化剂和植物激素的水平来提高谷子 (Setaria italica) 的耐盐性

阅读:6
作者:Shenghui Xiao, Yiman Wan, Yue Zheng, Yongdong Wang, Jiayin Fan, Qian Xu, Zheng Gao, Changai Wu

Abstract

Plant growth-promoting bacterias (PGPBs) can increase crop output under normal and abiotic conditions. However, the mechanisms underlying the plant salt tolerance-promoting role of PGPBs still remain largely unknown. In this study, we demonstrated that Halomonas ventosae JPT10 promoted the salt tolerance of both dicots and monocots. Physiological analysis revealed that JPT10 reduced reactive oxygen species accumulation by improving the antioxidant capability of foxtail millet seedlings. The metabolomic analysis of JPT10-inoculated foxtail millet seedlings led to the identification of 438 diversely accumulated metabolites, including flavonoids, phenolic acids, lignans, coumarins, sugar, alkaloids, organic acids, and lipids, under salt stress. Exogenous apigenin and chlorogenic acid increased the salt tolerance of foxtail millet seedlings. Simultaneously, JPT10 led to greater amounts of abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and their derivatives but lower levels of 12-oxo-phytodienoic acid (OPDA), jasmonate (JA), and JA-isoleucine (JA-Ile) under salt stress. Exogenous JA, methyl-JA, and OPDA intensified, whereas ibuprofen or phenitone, two inhibitors of JA and OPDA biosynthesis, partially reversed, the growth inhibition of foxtail millet seedlings caused by salt stress. Our results shed light on the response of foxtail millet seedlings to H. ventosae under salt stress and provide potential compounds to increase salt tolerance in foxtail millet and other crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。