A higher plant delta8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants

高等植物 delta8 鞘脂去饱和酶倾向于形成 (Z)-异构体,使酵母和植物具有铝耐受性

阅读:5
作者:Peter R Ryan, Qing Liu, Petra Sperling, Bei Dong, Stefan Franke, Emmanuel Delhaize

Abstract

Three plant cDNA libraries were expressed in yeast (Saccharomyces cerevisiae) and screened on agar plates containing toxic concentrations of aluminum. Nine cDNAs were isolated that enhanced the aluminum tolerance of yeast. These cDNAs were constitutively expressed in Arabidopsis (Arabidopsis thaliana) and one cDNA from the roots of Stylosanthes hamata, designated S851, conferred greater aluminum tolerance to the transgenic seedlings. The protein predicted to be encoded by S851 showed an equally high similarity to Delta6 fatty acyl lipid desaturases and Delta8 sphingolipid desaturases. We expressed other known Delta6 desaturase and Delta8 desaturase genes in yeast and showed that a Delta6 fatty acyl desaturase from Echium plantagineum did not confer aluminum tolerance, whereas a Delta8 sphingobase desaturase from Arabidopsis did confer aluminum tolerance. Analysis of the fatty acids and sphingobases of the transgenic yeast and plant cells demonstrated that S851 encodes a Delta8 sphingobase desaturase, which leads to the accumulation of 8(Z/E)-C(18)-phytosphingenine and 8(Z/E)-C(20)-phytopshingenine in yeast and to the accumulation of 8(Z/E)-C(18)-phytosphingenine in the leaves and roots of Arabidopsis plants. The newly formed 8(Z/E)-C(18)-phytosphingenine in transgenic yeast accounted for 3 mol% of the total sphingobases with a 8(Z):8(E)-isomer ratio of approximately 4:1. The accumulation of 8(Z)-C(18)-phytosphingenine in transgenic Arabidopsis shifted the ratio of the 8(Z):8(E) isomers from 1:4 in wild-type plants to 1:1 in transgenic plants. These results indicate that S851 encodes the first Delta8 sphingolipid desaturase to be identified in higher plants with a preference for the 8(Z)-isomer. They further demonstrate that changes in the sphingolipid composition of cell membranes can protect plants from aluminum stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。