Identification of DNA methylation-regulated genes as potential biomarkers for coronary heart disease via machine learning in the Framingham Heart Study

在 Framingham 心脏研究中通过机器学习识别 DNA 甲基化调节基因作为冠心病的潜在生物标志物

阅读:7
作者:Xiaokang Zhang, Chen Wang, Dingdong He, Yating Cheng, Li Yu, Daoxi Qi, Boyu Li, Fang Zheng

Background

DNA methylation-regulated genes have been demonstrated as the crucial participants in the occurrence of coronary heart disease (CHD). The machine learning based on DNA methylation-regulated genes has tremendous potential for mining non-invasive predictive biomarkers and exploring underlying new mechanisms of CHD.

Conclusions

We identified five DNA methylation-regulated genes based on a predictive model for CHD using machine learning, which may clue the new epigenetic mechanism for CHD.

Results

First, the 2085 age-gender-matched individuals in Framingham Heart Study (FHS) were randomly divided into training set and validation set. We then integrated methylome and transcriptome data of peripheral blood leukocytes (PBLs) from the training set to probe into the methylation and expression patterns of CHD-related genes. A total of five hub DNA methylation-regulated genes were identified in CHD through dimensionality reduction, including ATG7, BACH2, CDKN1B, DHCR24 and MPO. Subsequently, methylation and expression features of the hub DNA methylation-regulated genes were used to construct machine learning models for CHD prediction by LightGBM, XGBoost and Random Forest. The optimal model established by LightGBM exhibited favorable predictive capacity, whose AUC, sensitivity, and specificity were 0.834, 0.672, 0.864 in the validation set, respectively. Furthermore, the methylation and expression statuses of the hub genes were verified in monocytes using methylation microarray and transcriptome sequencing. The methylation statuses of ATG7, DHCR24 and MPO and the expression statuses of ATG7, BACH2 and DHCR24 in monocytes of our study population were consistent with those in PBLs from FHS. Conclusions: We identified five DNA methylation-regulated genes based on a predictive model for CHD using machine learning, which may clue the new epigenetic mechanism for CHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。