Composite of KLVFF-Transthyretin-Penetratin and Manganese Dioxide Nanoclusters: A Multifunctional Agent against Alzheimer's β-Amyloid Fibrillogenesis

KLVFF-转甲状腺素蛋白-渗透蛋白和二氧化锰纳米簇的复合物:一种对抗阿尔茨海默氏症 β-淀粉样蛋白纤维形成的多功能药剂

阅读:9
作者:Haitao Lan, Ying Wang, Wei Liu, Xiaoyan Dong, Yan Sun

Abstract

Design of amyloid β-protein (Aβ) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer's disease (AD). However, the limited blood-brain barrier (BBB) penetration and poor Aβ-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to engineer transthyretin (TTR) by fusion of the Aβ-targeting peptide KLVFF and cell-penetrating peptide Penetratin to TTR, and derived a fusion protein, KLVFF-TTR-Penetratin (KTP). Moreover, to introduce the scavenging activity for reactive oxygen species (ROS), a nanocomposite of KTP and manganese dioxide nanoclusters (KTP@MnO2) was fabricated by biomineralization. Results revealed that KTP@MnO2 demonstrated significantly enhanced inhibition on Aβ aggregation as compared to TTR. The inhibitory effect was increased from 18%, 33%, and 49% (10, 25, and 50 μg/mL TTR, respectively) to 52%, 81%, and 100% (10, 25, and 50 μg/mL KTP@MnO2). In addition, KTP@MnO2 could penetrate the BBB and target amyloid plaques. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aβ-induced-ROS, which cannot be scavenged by TTR, were scavenged by KTP@MnO2, thus resulting in the mitigation of cellular oxidative damages. More importantly, cell culture and in vivo experiments with AD nematodes indicated that KTP@MnO2 at 50 μg/mL increased the viability of Aβ-treated cells from 66% to more than 95%, and completely cleared amyloid plaques in AD nematodes and extended their lifespan by 7 d. Overall, despite critical aspects such as the stability, metabolic distribution, long-term biotoxicity, and immunogenicity of the nanocomposites in mammalian models remaining to be investigated, this work has demonstrated the multifunctionality of KTP@MnO2 for targeting Aβ in vivo, and provided new insights into the design of multifunctional nanocomposites of protein-metal clusters against AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。