Spatial alignment of 3D printed scaffolds modulates genotypic expression in pre-osteoblasts

3D 打印支架的空间排列调节前成骨细胞中的基因型表达

阅读:7
作者:Naveen Nagiah, Maumita Bhattacharjee, Christopher J Murdock, Ho-Man Kan, Mohammed Barajaa, Cato T Laurencin

Abstract

3D printing, an advent from rapid prototyping technology is emerging as a suitable solution for various regenerative engineering applications. In this study, blended gelatin-sodium alginate 3D printed scaffolds with different pore geometries were developed by altering the spatiotemporal alignment of even layered struts in the scaffolds. A significant difference in compression modulus and osteogenic expression due to the difference in spatiotemporal printing was demonstrated. Pore geometry was found to be more dominant than the compressive modulus of the scaffold in regulating osteogenic gene expression. A shift in pore geometry by at least 45° was critical for significant increase in osteogenic gene expression in MC3T3-E1 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。