Identifying potential pathogenesis and immune infiltration in diabetic foot ulcers using bioinformatics and in vitro analyses

使用生物信息学和体外分析识别糖尿病足部溃疡的潜在发病机制和免疫浸润

阅读:6
作者:Yuanyuan Xu, Jianchang Xu, Sirong Chen, Anbang Zhou, Guangjing Huang, Shidao Huang, Dianbo Yu, Biaoliang Wu

Background

Diabetic foot ulcers (DFU) are among the fastest-growing diseases worldwide. Recent evidence has emphasized the critical role of microRNA (miRNA)-mRNA networks in various chronic wounds, including DFU. In this study, we aimed to clarify the miRNA-mRNA axes associated with the occurrence of DFU.

Conclusions

In summary, the miR-182-5p-CHL1/MITF and miR-338-3p-NOVA1 pathway interactions and decreased infiltration of M1 macrophages and resting mast cells may provide novel clues to the pathogenesis of DFU.

Methods

Expression profiles of miRNAs and mRNAs were extracted from the Gene Expression Omnibus. Differentially expressed genes and differentially expressed miRNAs were identified, and miRNA-mRNA regulatory axes were constructed through integrated bioinformatics analyses. We validated the miRNA-mRNA axes using quantitative real-time PCR (qPCR) and dual-luciferase reporter assays. We conducted an immune infiltration analysis and confirmed the bioinformatics

Results

miR-182-5p-CHL1/MITF and miR-338-3p-NOVA1 interactions were identified using in silico analysis. The qPCR results showed apparent dysregulation of these miRNA-mRNA axes in DFU. The dual-luciferase reporter assay confirmed that miR-182-5p targeted CHL1 and MITF, and miR-338-3p targeted NOVA1. We conducted an immune infiltration analysis and observed that key genes correlated with decreased infiltration of M1 macrophages and resting mast cells in DFU. Immunofluorescence staining verified the co-localization of CHL1 and tryptase, while MITF and CD68 showed weak positive correlations. Metabolic pathways related to these three genes were identified using ssGSEA. Conclusions: In summary, the miR-182-5p-CHL1/MITF and miR-338-3p-NOVA1 pathway interactions and decreased infiltration of M1 macrophages and resting mast cells may provide novel clues to the pathogenesis of DFU.

Trial registration

The clinical trial included in this study was registered in the Chinese Clinical Trial Registry ( ChiCTR2200066660 ) on December 13, 2022.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。