Efficient Activation of Peroxymonosulfate by Biochar-Loaded Zero-Valent Copper for Enrofloxacin Degradation: Singlet Oxygen-Dominated Oxidation Process

生物炭负载零价铜有效活化过氧单硫酸盐降解恩诺沙星:单线态氧主导的氧化过程

阅读:5
作者:Jiang Zhao, Tianyin Chen, Cheng Hou, Baorong Huang, Jiawen Du, Nengqian Liu, Xuefei Zhou, Yalei Zhang

Abstract

The removal of contaminants of emerging concern (CECs) has become a hot research topic in the field of environmental engineering in recent years. In this work, a simple pyrolysis method was designed to prepare a high-performance biochar-loaded zero-valent copper (CuC) material for the catalytic degradation of antibiotics ENR by PMS. The results showed that 10 mg/L of ENR was completely removed within 30 min at an initial pH of 3, CuC 0.3 g/L, and PMS 2 mmol/L. Further studies confirmed that the reactive oxygen species (ROS) involved in ENR degradation are ·OH, SO4-·, 1O2, and O2-. Among them, 1O2 played a major role in degradation, whereas O2-· played a key role in the indirect generation of 1O2. On the one hand, CuC adsorbed and activated PMS to generate ·OH, SO4-· and O2-·. O2-· was unstable and reacted rapidly with H2O and ·OH to generate large amounts of 1O2. On the other hand, both the self-decomposition of PMS and direct activation of PMS by C=O on biochar also generated 1O2. Five byproducts were generated during degradation and eventually mineralized to CO2, H2O, NO3-, and F-. This study provides a facile strategy and new insights into the biochar-loaded zero-valent transition-metal-catalyzed PMS degradation of CECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。