Substantial non-electrostatic forces are needed to induce allosteric disruption of thrombin's active site through exosite 2

需要大量的非静电力才能通过外部位点 2 诱导凝血酶活性位点的变构破坏

阅读:10
作者:Akul Y Mehta, Umesh R Desai

Abstract

Sulfated β-O4 lignin (SbO4L), a non-saccharide glycosaminoglycan mimetic, was recently disclosed as a novel exosite 2-directed thrombin inhibitor with the capability of mimicking sulfated tyrosine sequences of glycoprotein Ibα resulting in dual anticoagulant and antiplatelet activities. SbO4L engages essentially the same residues of exosite 2 as heparin and yet induces allosteric inhibition. Fluorescence spectroscopic studies indicate that SbO4L reduces access of the active site to molecular probes and affinity studies at varying salt concentrations show nearly 6 ionic interactions, similar to heparin, but much higher non-ionic contribution. The results suggest that subtle increase in non-electrostatic forces arising from SbO4L's aromatic scaffold appear to be critical for inducing allosteric dysfunction of thrombin's active site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。