Identification of geraldol as an inhibitor of aquaporin‑4 binding by NMO‑IgG

确定杰拉多尔是 NMO-IgG 结合水通道蛋白 4 的抑制剂

阅读:5
作者:Jie Wang, Shuai Wang, Meiyan Sun, Huijing Xu, Wei Liu, Deli Wang, Lei Zhang, Yan Li, Jiaming Cao, Fang Li, Miao Li

Abstract

Neuromyelitis optica (NMO) is a severe neurological demyelinating autoimmune disease that affects the optic nerves and spinal cord. There is currently no effective cure or therapy. Aquaporin‑4 (AQP4) is a known target of the autoimmune antibody NMO‑IgG. Therefore, binding of NMO‑IgG to AQP4, and subsequent activation of antibody‑mediated and complement‑dependent cytotoxicity (CDC), are thought to underlie the pathogenesis of NMO. In the present study, a cell‑based high‑throughput screening approach was developed to identify molecular inhibitors of NMO‑IgG binding to AQP4. Using this approach, extracts from the herb Petroselinum crispum were shown to have inhibitory effects on NMO‑IgG binding to AQP4, and the natural compound geraldol was purified from the herb extracts. Analytical high performance liquid chromatography, electrospray ionization‑mass spectrometry and nuclear magnetic resonance analyses confirmed the identity of the isolated compound as geraldol, a flavonoid. Geraldol effectively blocked binding of NMO‑IgG to AQP4 in immunofluorescence assays and decreased CDC in NMO‑IgG/complement‑treated FRTL‑AQP4 cells and primary astrocytes. Geraldol exhibited low cytotoxicity, with no effect on proliferation or apoptosis of FRTL‑AQP4 cells and primary astrocytes. Permeability assays indicated that geraldol did not alter the water transport function of AQP4 in either cell system. The present study suggests the potential therapeutic value of geraldol for NMO drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。