Multi-tissue transcriptomic aging atlas reveals predictive aging biomarkers in the killifish

多组织转录组衰老图谱揭示了鳉鱼的预测衰老生物标志物

阅读:5
作者:Emma K Costa, Jingxun Chen, Ian H Guldner, Lajoyce Mboning, Natalie Schmahl, Aleksandra Tsenter, Man-Ru Wu, Patricia Moran-Losada, Louis S Bouchard, Sui Wang, Param Priya Singh, Matteo Pellegrini, Anne Brunet, Tony Wyss-Coray

Abstract

Aging is associated with progressive tissue dysfunction, leading to frailty and mortality. Characterizing aging features, such as changes in gene expression and dynamics, shared across tissues or specific to each tissue, is crucial for understanding systemic and local factors contributing to the aging process. We performed RNA-sequencing on 13 tissues at 6 different ages in the African turquoise killifish, the shortest-lived vertebrate that can be raised in captivity. This comprehensive, sex-balanced 'atlas' dataset reveals the varying strength of sex-age interactions across killifish tissues and identifies age-altered biological pathways that are evolutionarily conserved. Demonstrating the utility of this resource, we discovered that the killifish head kidney exhibits a myeloid bias during aging, a phenomenon more pronounced in females than in males. In addition, we developed tissue-specific 'transcriptomic clocks' and identified biomarkers predictive of chronological age. We show the importance of sex-specific clocks for selected tissues and use the tissue clocks to evaluate a dietary intervention in the killifish. Our work provides a comprehensive resource for studying aging dynamics across tissues in the killifish, a powerful vertebrate aging model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。