Optimization of Pulsed Electric Field as Standalone "Green" Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves

优化脉冲电场作为独立“绿色”提取程序,从新鲜橄榄叶中回收高附加值化合物

阅读:5
作者:Vasileios M Pappas, Achillia Lakka, Dimitrios Palaiogiannis, Vassilis Athanasiadis, Eleni Bozinou, George Ntourtoglou, Dimitris P Makris, Vassilis G Dourtoglou, Stavros I Lalas

Abstract

Olive leaves (OLL) are reported as a source of valuable antioxidants and as an agricultural by-product/waste. Thus, a twofold objective with multi-level cost and environmental benefits arises for a "green" standalone extraction technology. This study evaluates the OLL waste valorization through maximizing OLL extracts polyphenol concentration utilizing an emerging "green" non-thermal technology, Pulsed Electric Field (PEF). It also provides further insight into the PEF assistance span for static solid-liquid extraction of OLL by choosing and fine-tuning important PEF parameters such as the extraction chamber geometry, electric field strength, pulse duration, pulse period (and frequency), and extraction duration. The produced extracts were evaluated via comparison amongst them and against extracts obtained without the application of PEF. The Folin-Ciocalteu method, high-performance liquid chromatography, and differential scanning calorimetry were used to determine the extraction efficiency. The optimal PEF contribution on the total polyphenols extractability (38% increase with a 117% increase for specific metabolites) was presented for rectangular extraction chamber, 25% v/v ethanol:water solvent, pulse duration (tpulse) 2 μs, electric field strength (E) 0.85 kV cm-1, 100 μs period (Τ), and 15 min extraction duration (textraction), ascertaining a significant dependence of PEF assisting extraction performance to the parameters chosen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。