Bioactivation Treatment with Mixed Acid and Heat on Titanium Implants Fabricated by Selective Laser Melting Enhances Preosteoblast Cell Differentiation

采用混合酸和热对选择性激光熔化制造的钛植入物进行生物活化处理可增强前成骨细胞分化

阅读:5
作者:Phuc Thi Minh Le, Seine A Shintani, Hiroaki Takadama, Morihiro Ito, Tatsuya Kakutani, Hisashi Kitagaki, Shuntaro Terauchi, Takaaki Ueno, Hiroyuki Nakano, Yoichiro Nakajima, Kazuya Inoue, Tomiharu Matsushita, Seiji Yamaguchi

Abstract

Selective laser melting (SLM) is a promising technology capable of producing individual characteristics with a high degree of surface roughness for implants. These surfaces can be modified so as to increase their osseointegration, bone generation and biocompatibility, features which are critical to their clinical success. In this study, we evaluated the effects on preosteoblast proliferation and differentiation of titanium metal (Ti) with a high degree of roughness (Ra = 5.4266 ± 1.282 µm) prepared by SLM (SLM-Ti) that was also subjected to surface bioactive treatment by mixed acid and heat (MAH). The results showed that the MAH treatment further increased the surface roughness, wettability and apatite formation capacity of SLM-Ti, features which are useful for cell attachment and bone bonding. Quantitative measurement of osteogenic-related gene expression by RT-PCR indicated that the MC3T3-E1 cells on the SLM-Ti MAH surface presented a stronger tendency towards osteogenic differentiation at the genetic level through significantly increased expression of Alp, Ocn, Runx2 and Opn. We conclude that bio-activated SLM-Ti enhanced preosteoblast differentiation. These findings suggest that the mixed acid and heat treatment on SLM-Ti is promising method for preparing the next generation of orthopedic and dental implants because of its apatite formation and cell differentiation capability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。