Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity

EPS 基质封存纳米颗粒可降低颗粒特定的杀菌活性

阅读:5
作者:Qian Wang, Fuxing Kang, Yanzheng Gao, Xuewei Mao, Xiaojie Hu

Abstract

Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L(-1)) and 79% (SiO2NPs, 500 mg L(-1)), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。