Aim
Solithromycin is a new macrolide antibiotic for the potential treatment of bacterial pneumonia. Materials &
Conclusion
Solithromycin is N-acetylated by human NAT1 and NAT2 and the role of the NAT2 acetylation polymorphism on solithromycin metabolism may be concentration dependent.
Methods
Solithromycin N-acetylation by human NAT1 and NAT2 was investigated following recombinant expression in yeast and in cryopreserved human hepatocytes from rapid, intermediate and slow acetylators.
Results
Solithromycin exhibited over twofold higher affinity for recombinant human NAT2 than NAT1. Apparent maximum velocities for the N-acetylation of solithromycin catalyzed by the NAT2 allozyme associated with rapid acetylators were significantly (p < 0.01) higher than by the NAT2 allozymes associated with slow acetylators. Robust gene dose responses (rapid>intermediate>slow acetylators) were exhibited in cryopreserved human hepatocytes in situ following incubation with 100 μM solithromycin.
