Preservation of motor neuron Ca2+ channel sensitivity to insulin-like growth factor-1 in brain motor cortex from senescent rat

衰老大鼠大脑运动皮质中运动神经元 Ca2+ 通道对胰岛素样生长因子-1 的敏感性保留

阅读:4
作者:Hongqu Shan, Maria Laura Messi, Zhenlin Zheng, Zhong-Min Wang, Osvaldo Delbono

Abstract

Despite the multiple effects on mammals during development, the effectiveness of the insulin-like growth factor-1 (IGF-1) to sustain cell function and structure in the brain of senescent mammals is almost completely unknown. To address this issue, we investigated whether the effects of IGF-1 on specific targets are preserved at later stages of life. Voltage-gated Ca2+ channels (VGCC) are well-characterized targets of IGF-1. VGCC regulate membrane excitability and gene transcription along with other functions that have been found to be impaired in the brain of senescent rodents. As the voluntary control of movement has been reported to be altered in the elderly, we investigated the expression, function and responsiveness of high (HVA)- and low-voltage-activated (LVA) Ca2+ channels to IGF-1, using the whole-cell configuration of the patch-clamp and RT-PCR in the specific region of the rat motor cortex that controls hindlimb muscle movement. We detected the expression of alpha 1A, alpha 1B and alpha 1E genes encoding the HVA Ca2+ channels P/Q, N and R, respectively, but not alpha 1C, alpha 1D, alpha 1S encoding the L-type Ca2+ channel in this region of the brain cortex. IGF-1 enhanced Ca2+ channel currents through P/Q- and N-type channels but not significantly through the R-type or LVA channels. IGF-1 enhanced the amplitude but did not modify the voltage dependence of Ca2+ channel currents in young (2- to 4-week-old), young adult (7-month-old) and senescent (28- to 29-month-old) rats. These results support the concept that despite the reported decrease in circulating (liver) and local (central nervous system) production of IGF-1 with ageing, key neuronal targets such as the VGCC remain responsive to the growth factor throughout life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。