Inhibition of histone deacetylase 3 by MiR-494 alleviates neuronal loss and improves neurological recovery in experimental stroke

MiR-494 抑制组蛋白去乙酰化酶 3 可减轻实验性中风中的神经元丢失并改善神经功能恢复

阅读:5
作者:Haiping Zhao, Guangwen Li, Sijia Zhang, Fangfang Li, Rongliang Wang, Zhen Tao, Qingfeng Ma, Ziping Han, Feng Yan, Junfen Fan, Lingzhi Li, Xunming Ji, Yumin Luo

Abstract

HDAC3 is an essential negative regulator of neuronal plasticity and memory formation. Although a chemical inhibitor has been invented, little is known about its endogenous modulators. We explored whether miR-494 affects HDAC3-mediated neuronal injury following acute ischemic stroke. A substantial increase in plasma miR-494 was detected in AIS patients and was positively associated with the mRS at one year after symptom onset. The miR-494 levels were transiently increased in the infarcted brain tissue of mice. In contrast, miR-494 levels were reduced in neurons but increased in the medium after OGD. Intracerebroventricular injection of miR-494 agomir reduced neuronal apoptosis and infarct volume at the acute stage of MCAO, promoted axonal plasticity and long-term outcomes at the recovery stage, suppressed neuronal ataxin-3 and HDAC3 expression and increased acetyl-H3K9 levels in the ipsilateral hemisphere. In vitro studies confirmed that miR-494 posttranslationally inhibited HDAC3 in neurons and prevented OGD-induced neuronal axonal injury. The HDAC3 inhibitor increased acetyl-H3K9 levels and reversed miR-494 antagomir-aggravated acute cerebral ischemic injury, as well as brain atrophy and long-term functional recovery. These results suggest that miR-494 may serve as a predictive biomarker of functional outcomes in AIS patients and a potential therapeutic target for the treatment of ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。