Osteoblast-Derived ECM1 Promotes Anti-Androgen Resistance in Bone Metastatic Prostate Cancer

成骨细胞衍生的 ECM1 促进骨转移性前列腺癌的抗雄激素抵抗

阅读:5
作者:Xinwen Wang, Min Wang, Qijun Lin, Lixin He, Baolin Zhang, Xin Chen, Guanhong Chen, Hong Du, Chuandong Lang, Xinsheng Peng, Yuhu Dai

Abstract

Acquired resistance to hormonal therapy, particularly enzalutamide (ENZ), remains a significant obstacle in the treatment of advanced bone metastatic prostate cancer. Here, it is demonstrated that under ENZ treatment, osteoblasts in the bone microenvironment secrete increased levels of extracellular matrix protein 1 (ECM1), which affects surrounding prostate cancer cells, promoting tumor cell proliferation and anti-androgen resistance. Mechanistically, ECM1 interacts with the enolase 1 (ENO1) receptor on the prostate cancer cell membrane, leading to its phosphorylation at the Y189 site. This event further recruits adapter proteins including growth factor receptor-bound protein 2 (GRB2) and son of sevenless homolog 1 (SOS1), which activates the downstream mitogen-activated protein kinase (MAPK) signaling pathway to induce anti-androgen resistance. Furthermore, inhibiting ECM1 or utilizing the ENO1-targeting inhibitor phosphonoacetohydroxamate (PhAH) significantly restores tumor cell sensitivity to ENZ. Taken together, a potential mechanism is identified through which osteoblast-derived ECM1 drives resistance in bone metastatic prostate cancer under ENZ treatment. Additionally, the findings indicate that ECM1 and ENO1 may serve as potential targets for developing therapies for bone metastatic castration-resistant prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。