Direct-Print 3D Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces

用于大规模、高密度和可定制神经接口的直接打印 3D 电极

阅读:6
作者:Pingyu Wang, Eric G Wu, Hasan Uluşan, Eric Tianjiao Zhao, A J Phillips, Alexandra Kling, Madeline Rose Hays, Praful Krishna Vasireddy, Sasidhar Madugula, Ramandeep Vilkhu, Andreas Hierlemann, Guosong Hong, E J Chichilnisky, Nicholas A Melosh

Abstract

Silicon-based microelectronics can scalably record and modulate neural activity at high spatiotemporal resolution, but their planar form factor poses challenges in targeting 3D neural structures. A method for fabricating tissue-penetrating 3D microelectrodes directly onto planar microelectronics using high-resolution 3D printing via 2-photon polymerization and scalable microfabrication technologies are presented. This approach enables customizable electrode shape, height, and positioning for precise targeting of neuron populations distributed in 3D. The effectiveness of this approach is demonstrated in tackling the critical challenge of interfacing with the retina-specifically, selectively targeting retinal ganglion cell (RGC) somas while avoiding the axon bundle layer. 6,600-microelectrode, 35 µm pitch, tissue-penetrating arrays are fabricated to obtain high-fidelity, high-resolution, and large-scale retinal recording that reveals little axonal interference, a capability previously undemonstrated. Confocal microscopy further confirms the precise placement of the microelectrodes. This technology can be a versatile solution for interfacing silicon microelectronics with neural structures at a large scale and cellular resolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。