Chemically Modified Oligonucleotides Modulate an Epigenetically Varied and Transient Form of Transcription Silencing of HIV-1 in Human Cells

化学修饰的寡核苷酸调节人类细胞中 HIV-1 的表观遗传变异和瞬时转录沉默形式

阅读:12
作者:Stuart Knowling, Kenneth Stapleton, Anne-Marie W Turner, Eugen Uhlmann, Thomas Lehmann, Jörg Vollmer, Kevin V Morris

Abstract

Small noncoding RNAs (ncRNAs) have been shown to guide epigenetic silencing complexes to target loci in human cells. When targeted to gene promoters, these small RNAs can lead to long-term stable epigenetic silencing of gene transcription. To date, small RNAs have been shown to modulate transcriptional gene silencing (TGS) of human immunodeficiency virus type 1 (HIV-1) as well as several other disease-related genes, but it has remained unknown as to what extent particular chemistries can be used to generate single-stranded backbone-modified oligonucleotides that are amenable to this form of gene targeting and regulation. Here, we present data indicating that specific combinations of backbone modifications can be used to generate single-stranded antisense oligonucleotides that can functionally direct TGS of HIV-1 in a manner that is however, independent of epigenetic changes at the target loci. Furthermore, this functionality appears contingent on the absence of a 5' phosphate in the oligonucleotide. These data suggest that chemically modified oligonucleotide based approaches could be implemented as a means to regulate gene transcription in an epigenetically independent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。