The amelioration of ovarian dysfunction by hesperidin in malathion-treated mice through the overexpression of PCNA and FSHR proteins

橙皮苷通过过度表达 PCNA 和 FSHR 蛋白改善接受马拉硫磷治疗的小鼠的卵巢功能障碍

阅读:6
作者:Mahnaz Zarein, Asghar Zarban, Hamed Shoorei, Mehdi Gharekhani, Mohammadmehdi Hassanzadeh-Taheri

Conclusion

Treatment with HES via upregulating the protein expression of PCNA and FSHR and activating antioxidant defense was able to ameliorate the adverse effects of MAL on ovarian tissues.

Methods

In this experiment, forty adult female bulb/c mice weighing 27-30 g were categorized into four groups, namely hesperidin (20 mg/kg, i.p.), malathion (3 mg/kg, i.p.), malathion + hesperidin, and control groups. Following a period of 35 consecutive days of treatment, mice were euthanized, and their ovarian tissues were gathered for the purposes of histopathological analysis by H&E staining, immunohistochemical assessment via proliferating cell nuclear antigen (PCNA) and follicle-stimulating hormone receptor (FSHR) immunostaining, and biochemical evaluation via measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β). In addition, serum samples were collected from the blood of mice to perform hormonal analyses, especially 17β-estradiol (E2), progesterone (P4), luteinizing hormone (LH), and follicle-stimulating hormone (FSH).

Objective

Malathion (MAL), a pesticide used for decades, is a highly toxic substance. Several studies have documented the negative effects of such agents on reproductive organ physiology, but the precise mechanism of action in the induction of ovarian dysfunction remains unclear. Therefore, the purpose of this research was to examine the effects of the antioxidant hesperidin (HES) on ovarian damage and toxicity caused by malathion. Materials and

Results

The results demonstrated that MAL exposure resulted in the development of abnormalities in the architecture and structure of ovaries. Also, the treatment of mice with MAL led to declined follicular counts at all three stages, namely, primary, secondary, and tertiary, reduced serum levels of sex hormones, decreased immunoreactivity of FSHR and PCNA, and diminished activity of CAT and SOD enzymes. In contrast, it caused an increase in MDA, IL-1β, and TNF-α, as well as the count of atretic follicles. Nonetheless, it was observed that HES exhibited the ability to ameliorate the deleterious impacts of malathion across all the aforementioned parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。