Insights into the molecular mechanisms of lipid transformation in sturgeon fillets: Interplay between specific spoilage and dominant bacteria

深入了解鲟鱼片脂质转化的分子机制:特定腐败和优势细菌之间的相互作用

阅读:8
作者:Chunming Tan, Shiqi Zhang, Fanglei Zou, Boya Gao, Yujin Li, Pinglan Li, Nan Shang

Abstract

This study investigates spoilage bacteria's impact on lipid metabolism in sturgeon fillets using UHPLC-Q-Orbitrap-MS/MS-based untargeted lipidomic analysis. A total of 4041 lipid molecules across five classes and 42 subclasses were identified, including glycerophospholipids (GPs, 50.88%), glycerolipids (GLs, 36.08%), sphingolipids (SPs, 10.47%), fatty acyls (FAs, 2.45%), and sterol lipids (STs, 0.12%). Aeromonas sobria, a specific spoilage bacterium, reduced GPs and FAs while increasing GLs, SPs, and STs via extracellular lipases and esterases. Acinetobacter albensis, the dominant bacterium, mainly elevated SPs and FAs. Their interaction promoted lipid metabolism and oxidation while producing volatile organic compounds (VOCs). Ethyl isobutyrate, ethyl propionate, isobutyl formate, pentan-2-one, propan-2-one, 2-butanone, 3-methyl-3-buten-1-ol, and dimethyl sulfide were mainly associated with Acinetobacter albensis, while 1-hexanol, 1-pentanol, 1-penten-3-ol, 1-hydroxypropan-2-one, 3-methyl-1-butanol, 2-methylbutanal, 3-hydroxy-2-butanone, and propionaldehyde were mainly related to Aeromonas sobria. This work unveils the mechanism of lipid transformation in sturgeon fillets during refrigerated storage, offering insights for aquatic products quality control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。