Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction

锚定在高度稳定的空心石墨烯纳米球上的孤立 Fe 单原子位点作为氧还原反应的高效电催化剂

阅读:5
作者:Xiaoyu Qiu, Xiaohong Yan, Huan Pang, Jingchun Wang, Dongmei Sun, Shaohua Wei, Lin Xu, Yawen Tang

Abstract

The rational design of economical and high-performance nanocatalysts to substitute Pt for the oxygen reduction reaction (ORR) is extremely desirable for the advancement of sustainable energy-conversion devices. Isolated single atom (ISA) catalysts have sparked tremendous interests in electrocatalysis due to their maximized atom utilization efficiency. Nevertheless, the fabrication of ISA catalysts remains a grand challenge. Here, a template-assisted approach is demonstrated to synthesize isolated Fe single atomic sites anchoring on graphene hollow nanospheres (denoted as Fe ISAs/GHSs) by using Fe phthalocyanine (FePc) as Fe precursor. The rigid planar macrocycle structure of FePc molecules and the steric-hindrance effect of graphene nanospheres are responsible for the dispersion of Fe-N x species at an atomic level. The combination of atomically dispersed Fe active sites and highly steady hollow substrate affords the Fe ISAs/GHSs outstanding ORR performance with enhanced activity, long-term stability, and better tolerance to methanol, SO2, and NO x in alkaline medium, outperforming the state-of-the-art commercial Pt/C catalyst. This work highlights the great promises of cost-effective Fe-based ISA catalysts in electrocatalysis and provides a versatile strategy for the synthesis of other single metal atom catalysts with superior performance for diverse applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。