Neuronal necrosis is regulated by a conserved chromatin-modifying cascade

神经元坏死由保守的染色质修饰级联调控

阅读:5
作者:Kai Liu, Lianggong Ding, Yuhong Li, Hui Yang, Chunyue Zhao, Ye Lei, Shuting Han, Wei Tao, Dengshun Miao, Hermann Steller, Michael J Welsh, Lei Liu

Abstract

Neuronal necrosis induced by calcium overload causes devastating brain dysfunction in diseases such as stroke and brain trauma. It has been considered a stochastic event lacking genetic regulation, and pharmacological means to suppress neuronal necrosis are lacking. Using a Drosophila model of calcium overloading, we found JIL-1/mitogen- and stress-activated protein kinase 1/2 is a regulator of neuronal necrosis through phosphorylation of histone H3 serine 28 (H3S28ph). Further, we identified its downstream events including displacement of polycomb repressive complex 1 (PRC1) and activation of Trithorax (Trx). To test the role of JIL-1/PRC1/Trx cascade in mammals, we studied the necrosis induced by glutamate in rat cortical neuron cultures and rodent models of brain ischemia and found the cascade is activated in these conditions and inhibition of the cascade suppresses necrosis in vitro and in vivo. Together, our research demonstrates that neuronal necrosis is regulated by a chromatin-modifying cascade, and this discovery may provide potential therapeutic targets and biomarkers for neuronal necrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。