Generation of a novel mouse model of nemaline myopathy due to recurrent NEB exon 55 deletion

因复发性 NEB 外显子 55 缺失而产生新型杆状体肌病小鼠模型的生成

阅读:8
作者:Zachary Coulson, Justin Kolb, Nesrin Sabha, Esmat Karimi, Zaynab Hourani, Coen Ottenheijm, Henk Granzier, James J Dowling

Abstract

Biallelic pathogenic variants in the nebulin (NEB) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in NEB. Previously, a mouse model of Neb ΔExon55 was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in Neb transcript expression that is not observed in NEB exon 55 patients. We identified by RNA sequencing that the cause of this unexpectedly severe presentation in mice is the generation of a pseudoexon containing two premature termination codons (and promoting nonsense mediated decay) at the Neb exon 55 deletion site. To prove that this is the cause of the loss of Neb transcript, and to generate a more faithful model of the human disease, we used CRISPR gene editing to remove the pseudoexon sequence and replace it with human intron 54 sequence containing a validated cas9 gRNA protospacer. The resulting "hmz" mice have a significant reduction in pseudoexon formation (93.6% reduction), and a re-introduction of stable Neb transcript expression. This new model has the characteristic features of nemaline myopathy at the physiological, histological, and molecular levels. Importantly, unlike the existing exon 55 deletion mice (which die by age 7 days), it survives beyond the first months and exhibits obvious signs of neuromuscular dysfunction. It thus provides a new, robust model for studying pathomechanisms and developing therapies for NEB related nemaline myopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。