Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors

哺乳动物 P2X7 受体药理学:重组小鼠、大鼠和人类 P2X7 受体的比较

阅读:5
作者:Diana L Donnelly-Roberts, Marian T Namovic, Ping Han, Michael F Jarvis

Background and purpose

Acute activation of P2X7 receptors rapidly opens a non-selective cation channel. Sustained P2X7 receptor activation leads to the formation of cytolytic pores, mediated by downstream recruitment of hemichannels to the cell surface. Species- and single-nucleotide polymorphism-mediated differences in P2X7 receptor activation have been reported that complicate understanding of the physiological role of P2X7 receptors. Studies were conducted to determine pharmacological differences between human, rat and mouse P2X7 receptors. Experimental approach: Receptor-mediated changes in calcium influx and Yo-Pro uptake were compared between recombinant mouse, rat and human P2X7 receptors. For mouse P2X7 receptors, wild-type (BALB/c) and a reported loss of function (C57BL/6) P2X7 receptor were also compared. Key

Purpose

Acute activation of P2X7 receptors rapidly opens a non-selective cation channel. Sustained P2X7 receptor activation leads to the formation of cytolytic pores, mediated by downstream recruitment of hemichannels to the cell surface. Species- and single-nucleotide polymorphism-mediated differences in P2X7 receptor activation have been reported that complicate understanding of the physiological role of P2X7 receptors. Studies were conducted to determine pharmacological differences between human, rat and mouse P2X7 receptors. Experimental approach: Receptor-mediated changes in calcium influx and Yo-Pro uptake were compared between recombinant mouse, rat and human P2X7 receptors. For mouse P2X7 receptors, wild-type (BALB/c) and a reported loss of function (C57BL/6) P2X7 receptor were also compared. Key

Results

BzATP [2,3-O-(4-benzoylbenzoyl)-ATP] was more potent than ATP in stimulating calcium influx and Yo-Pro uptake at rat, human, BALB/c and C57BL/6 mouse P2X7 receptors. Two selective P2X7 receptor antagonists, A-740003 and A-438079, potently blocked P2X7 receptor activation across mammalian species. Several reported P2X1 receptor antagonists [e.g. MRS 2159 (4-[(4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl}-2-pyridinyl)azo]-benzoic acid), PPNDS and NF279] blocked P2X7 receptors. NF279 fully blocked human P2X7 receptors, but only partially blocked BALB/c P2X7 receptors and was inactive at C57BL/6 P2X7 receptors. Conclusions and implications: These data provide new insights into P2X7 receptor antagonist pharmacology across mammalian species. P2X7 receptor pharmacology in a widely used knockout background mouse strain (C57BL/6) was similar to wild-type mouse P2X7 receptors. Several structurally novel, selective and competitive P2X7 receptor antagonists show less species differences compared with earlier non-selective antagonists.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。