Abstract
This study presents an antibody-conjugated polydiacetylene (PDA) and its coated polyvinylidene difluoride (PVDF) membrane. The M149 antibody was hybridized to nano-vesicles consisting of pentacosa-10,12-diynoic acid (PCDA) and dimyristoylphosphatidylcholine (DMPC). After photo-polymerization at 254 nm, the effects on the PDA by antigenic injection were investigated with UV-vis spectroscopy, fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. Because PDA, an alternating ene-yne molecule, induces a blue-to-red color transition and an interesting fluorescent response by the distortion of its backbone, the biomolecular recognition of an antibody⁻antigen can be converted into an optical and fluorescent signal. Thus, an influenza antigen was successfully detected with the proposed label-free method. Furthermore, the vesicular system was improved by coating it onto a membrane type sensing platform for its stability and portability. The proposed antibody-PDA composite PVDF membrane has potential for rapid, easy and selective visualization of the influenza virus.
