Mixed meal tolerance testing highlights in diabetes altered branched-chain ketoacid metabolism and pathways associated with all-cause mortality

混合餐耐受性测试突出了糖尿病改变的支链酮酸代谢和与全因死亡相关的途径

阅读:5
作者:Michael Y Mi, Mark Whitlock, Xu Shi, Laurie A Farrell, Victoria M Bhambhani, Juweria Quadir, Matthew Blatnik, Kyle P Wald, Brendan Tierney, Albert Kim, Peter Loudon, Zsu-Zsu Chen, Adolfo Correa, Yan Gao, April P Carson, Alain G Bertoni, Rachel J Roth Flach, Robert E Gerszten2

Background

Elevated BCAA levels are strongly associated with diabetes, but how diabetes affects BCAA, branched-chain ketoacids (BCKAs), and the broader metabolome after a meal is not well known.

Conclusions

BCKA levels remained elevated after an MMTT among participants with diabetes, suggesting that BCKA catabolism may be a key dysregulated process in the interaction of BCAA and diabetes. Metabolites with different kinetics after an MMTT may be markers of dysmetabolism and associated with increased mortality in self-identified African Americans.

Methods

We administered an MMTT to 11 participants without obesity or diabetes and 13 participants with diabetes (treated with metformin only) and measured the levels of BCKAs, BCAAs, and 194 other metabolites at 8 time points across 5 h. We used mixed models for repeated measurements to compare between group metabolite differences at each timepoint with adjustment for baseline. We then evaluated the association of top metabolites with different kinetics with all-cause mortality in the Jackson Heart Study (JHS) (N = 2441).

Objective

To compare quantitative BCAA and BCKA levels in a multiracial cohort with and without diabetes after a mixed meal tolerance test (MMTT) as well as to explore the kinetics of additional metabolites and their associations with mortality in self-identified African Americans.

Results

BCAA levels, after adjustment for baseline, were similar at all timepoints between groups, but adjusted BCKA kinetics were different between groups for α-ketoisocaproate (P = 0.022) and α-ketoisovalerate (P = 0.021), most notably diverging at 120 min post-MMTT. An additional 20 metabolites had significantly different kinetics across timepoints between groups, and 9 of these metabolites-including several acylcarnitines-were significantly associated with mortality in JHS, irrespective of diabetes status. The highest quartile of a composite metabolite risk score was associated with higher mortality (HR:1.57; 1.20, 2.05, P = 0.00094) than the lowest quartile. Conclusions: BCKA levels remained elevated after an MMTT among participants with diabetes, suggesting that BCKA catabolism may be a key dysregulated process in the interaction of BCAA and diabetes. Metabolites with different kinetics after an MMTT may be markers of dysmetabolism and associated with increased mortality in self-identified African Americans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。