Novel 3,9-Disubstituted Acridines with Strong Inhibition Activity against Topoisomerase I: Synthesis, Biological Evaluation and Molecular Docking Study

具有强抑制拓扑异构酶I活性的新型3,9-二取代吖啶类化合物的合成、生物学评价及分子对接研究

阅读:10
作者:Kristína Krochtová, Annamária Halečková, Ladislav Janovec, Michaela Blizniaková, Katarína Kušnírová, Mária Kožurková

Abstract

A series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives 17a-17j, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level. The selected 3,9-disubstituted acridine derivatives were studied in the presence of DNA using spectroscopic (UV-Vis, circular dichroism, and thermal denaturation) and electrophoretic (nuclease activity, relaxation and unwinding assays for topoisomerase I and decatenation assay for topoisomerase IIα) methods. Binding constants (2.81-9.03 × 104 M-1) were calculated for the derivatives from the results of the absorption titration spectra. The derivatives were found to have caused the inhibition of both topoisomerase I and topoisomerase IIα. Molecular docking simulations suggested a different way in which the acridines 17a-17j can interact with topoisomerase I versus topoisomerase IIα. A strong correlation between the lipophilicity of the derivatives and their ability to stabilize the intercalation complex was identified for all of the studied agents. Acridines 17a-17j were also subjected to in vitro screening conducted by the Developmental Therapeutic Program of the National Cancer Institute (NCI) against a panel of 60 cancer cell lines. The strongest biological activity was displayed by aniline acridine 17a (MCF7-GI50 18.6 nM) and N,N-dimethylaniline acridine 17b (SR-GI50 38.0 nM). The relationship between the cytostatic activity of the most active substances (derivatives 17a, 17b, and 17e-17h) and their values of KB, LogP, ΔS°, and δ was also investigated. Due to the fact that a significant correlation was only found in the case of charge density, δ, it is possible to assume that the cytostatic effect might be dependent upon the structural specificity of the acridine derivatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。