Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth

人类胎盘中雷帕霉素的哺乳动物靶点调节亮氨酸运输,并在胎儿生长受限时下调

阅读:4
作者:Sara Roos, Nina Jansson, Isabelle Palmberg, Karin Säljö, Theresa L Powell, Thomas Jansson

Abstract

Pathological fetal growth is associated with perinatal morbidity and the development of diabetes and cardiovascular disease later in life. Placental nutrient transport is a primary determinant of fetal growth. In human intrauterine growth restriction (IUGR) the activity of key placental amino acid transporters, such as systems A and L, is decreased. However the mechanisms regulating placental nutrient transporters are poorly understood. We tested the hypothesis that the mammalian target of rapamycin (mTOR) signalling pathway regulates amino acid transport in the human placenta and that the activity of the placental mTOR pathway is reduced in IUGR. Using immunohistochemistry and culture of trophoblast cells, we show for the first time that the mTOR protein is expressed in the transporting epithelium of the human placenta. We further demonstrate that placental mTOR regulates activity of the l-amino acid transporter, but not system A or taurine transporters, by determining the mediated uptake of isotope-labelled leucine, methylaminoisobutyric acid and taurine in primary villous fragments after inhibition of mTOR using rapamycin. The protein expression of placental phospho-S6K1 (Thr-389), a measure of the activity of the mTOR signalling pathway, was markedly reduced in placentas obtained from pregnancies complicated by IUGR. These data identify mTOR as an important regulator of placental amino acid transport, and provide a mechanism for the changes in placental leucine transport in IUGR previously demonstrated in humans. We propose that mTOR functions as a placental nutrient sensor, matching fetal growth with maternal nutrient availability by regulating placental nutrient transport.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。