In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency

深入剖析类固醇 5β-还原酶 (AKR1D1) 的 P133R 突变:胆汁酸缺乏症的分子基础

阅读:4
作者:Mo Chen, Yi Jin, Trevor M Penning

Abstract

Human steroid-5β-reductase (aldo-keto reductase 1D1, AKR1D1) stereospecifically reduces Δ(4)-3-ketosteroids to 5β-dihydrosteroids and is essential for steroid hormone metabolism and bile acid biosynthesis. Genetic defects in AKR1D1 cause bile acid deficiency that leads to life threatening neonatal hepatitis and cholestasis. The disease-associated P133R mutation caused significant decreases in catalytic efficiency with both the representative steroid (cortisone) and the bile acid precursor (7α-hydroxycholest-4-en-3-one) substrates. Pro133 is a second shell residue to the steroid binding channel and is distal to both the cofactor binding site and the catalytic center. Strikingly, the P133R mutation caused over a 40-fold increase in Kd values for the NADP(H) cofactors and increased the rate of release of NADP(+) from the enzyme by 2 orders of magnitude when compared to the wild type enzyme. By contrast the effect of the mutation on Kd values for steroids were 10-fold or less. The reduced affinity for the cofactor suggests that the mutant exists largely in the less stable cofactor-free form in the cell. Using stopped-flow spectroscopy, a significant reduction in the rate of the chemical step was observed in multiple turnover reactions catalyzed by the P133R mutant, possibly due to the altered position of NADPH. Thus, impaired NADPH binding and hydride transfer is the molecular basis for bile acid deficiency in patients with the P133R mutation. Results revealed that optimal cofactor binding is vulnerable to distant structural perturbation, which may apply to other disease-associated mutations in AKR1D1, all of which occur at conserved residues and are unstable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。