Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity

在肿瘤微环境条件下的巨噬细胞中使用 XAV939 纳米粒子靶向 Wnt/β-catenin 信号传导可增强免疫原性

阅读:8
作者:Chetan Pundkar, Ferrin Antony, Xuejia Kang, Amarjit Mishra, R Jayachandra Babu, Pengyu Chen, Feng Li, Amol Suryawanshi

Abstract

The aberrant activation of Wnt/β-catenin signaling in tumor cells and immune cells in the tumor microenvironment (TME) promotes malignant transformation, metastasis, immune evasion, and resistance to cancer treatments. The increased Wnt ligand expression in TME activates β-catenin signaling in antigen (Ag)-presenting cells (APCs) and regulates anti-tumor immunity. Previously, we showed that activation of Wnt/β-catenin signaling in dendritic cells (DCs) promotes induction of regulatory T cell responses over anti-tumor CD4+ and CD8+ effector T cell responses and promotes tumor progression. In addition to DCs, tumor-associated macrophages (TAMs) also serve as APCs and regulate anti-tumor immunity. However, the role of β-catenin activation and its effect on TAM immunogenicity in TME is largely undefined. In this study, we investigated whether inhibiting β-catenin in TME-conditioned macrophages promotes immunogenicity. Using nanoparticle formulation of XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we performed in vitro macrophage co-culture assays with melanoma cells (MC) or melanoma cell supernatants (MCS) to investigate the effect on macrophage immunogenicity. We show that XAV-Np-treatment of macrophages conditioned with MC or MCS significantly upregulates the cell surface expression of CD80 and CD86 and suppresses the expression of PD-L1 and CD206 compared to MC or MCS-conditioned macrophages treated with control nanoparticle (Con-Np). Further, XAV-Np-treated macrophages conditioned with MC or MCS significantly increased IL-6 and TNF-α production, with reduced IL-10 production compared to Con-Np-treated macrophages. Moreover, the co-culture of MC and XAV-Np-treated macrophages with T cells resulted in increased CD8+ T cell proliferation compared to Con-Np-treated macrophages. These data suggest that targeted β-catenin inhibition in TAMs represents a promising therapeutic approach to promote anti-tumor immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。