Identification of potent chemotypes targeting Leishmania major using a high-throughput, low-stringency, computationally enhanced, small molecule screen

使用高通量、低严格性、计算增强的小分子筛选来鉴定针对利什曼原虫的有效化学型

阅读:5
作者:Elizabeth R Sharlow, David Close, Tongying Shun, Stephanie Leimgruber, Robyn Reed, Gabriela Mustata, Peter Wipf, Jacob Johnson, Michael O'Neil, Max Grögl, Alan J Magill, John S Lazo

Abstract

Patients with clinical manifestations of leishmaniasis, including cutaneous leishmaniasis, have limited treatment options, and existing therapies frequently have significant untoward liabilities. Rapid expansion in the diversity of available cutaneous leishmanicidal chemotypes is the initial step in finding alternative efficacious treatments. To this end, we combined a low-stringency Leishmania major promastigote growth inhibition assay with a structural computational filtering algorithm. After a rigorous assay validation process, we interrogated approximately 200,000 unique compounds for L. major promastigote growth inhibition. Using iterative computational filtering of the compounds exhibiting > 50% inhibition, we identified 553 structural clusters and 640 compound singletons. Secondary confirmation assays yielded 93 compounds with EC(50)s < or = 1 microM, with none of the identified chemotypes being structurally similar to known leishmanicidals and most having favorable in silico predicted bioavailability characteristics. The leishmanicidal activity of a representative subset of 15 chemotypes was confirmed in two independent assay formats, and L. major parasite specificity was demonstrated by assaying against a panel of human cell lines. Thirteen chemotypes inhibited the growth of a L. major axenic amastigote-like population. Murine in vivo efficacy studies using one of the new chemotypes document inhibition of footpad lesion development. These results authenticate that low stringency, large-scale compound screening combined with computational structure filtering can rapidly expand the chemotypes targeting in vitro and in vivo Leishmania growth and viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。