Spatiotemporal NF-κB dynamics encodes the position, amplitude, and duration of local immune inputs

时空 NF-κB 动态编码局部免疫输入的位置、幅度和持续时间

阅读:5
作者:Minjun Son, Tino Frank, Thomas Holst-Hansen, Andrew G Wang, Michael Junkin, Sara S Kashaf, Ala Trusina, Savaş Tay

Abstract

Infected cells communicate through secreted signaling molecules like cytokines, which carry information about pathogens. How differences in cytokine secretion affect inflammatory signaling over space and how responding cells decode information from propagating cytokines are not understood. By computationally and experimentally studying NF-κB dynamics in cocultures of signal-sending cells (macrophages) and signal-receiving cells (fibroblasts), we find that cytokine signals are transmitted by wave-like propagation of NF-κB activity and create well-defined activation zones in responding cells. NF-κB dynamics in responding cells can simultaneously encode information about cytokine dose, duration, and distance to the cytokine source. Spatially resolved transcriptional analysis reveals that responding cells transmit local cytokine information to distance-specific proinflammatory gene expression patterns, creating "gene expression zones." Despite single-cell variability, the size and duration of the signaling zone are tightly controlled by the macrophage secretion profile. Our results highlight how macrophages tune cytokine secretion to control signal transmission distance and how inflammatory signaling interprets these signals in space and time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。