Crystal growth inhibition of gypsum under normal conditions and high supersaturations by a copolymer of phosphino-polycarboxylic acid

膦基-多羧酸共聚物在正常条件和高过饱和条件下抑制石膏晶体生长

阅读:6
作者:Keyvan Malaie, Omid Shojaei, Saeed Iranpour, Zohreh Taherkhani

Abstract

Scale formation is a bottleneck of most industrial and domestic water equipment, in particular, of oilfield water systems. Therefore, high-performance and environmentally-benign chemical scale inhibitors are highly needed. Phosphino-polycarboxylic acid (PPCA) is a low-in-phosphorous scale inhibitor with high inhibition efficiency, but its synthesis and performance analyses have been rarely disclosed. In this work for the first time, a PPCA copolymer is synthesized by a simple method based on free radical polymerization of acrylic acid and phosphinic acid monomers and directly employed for gypsum scale inhibition. The formation of PPCA was verified by FTIR and 31PNMR spectroscopies, and then its inhibition performance was evaluated by the complexometric determination of the Ca2+ concentration. The PPCA (2.5 ppm) showed 100% inhibition efficiency at a saturation index of 0.31 at the room temperature and without pH regulation after 24 h with practically no detectable gypsum crystallites even after two months, while the commercial ATMP showed a low inhibition efficiency of 30%. The Field Emission Scanning Microscopy (FESEM) images of the PPCA-inhibited and uninhibited samples revealed that the typical gypsum microfibers are distorted and reduced in size significantly in the inhibited sample. At a still higher saturation index of 1.47 (saturation ratio of 10), the inhibition efficiency of PPCA reduced to 16% and 24% for two dosages of 2.5 and 10 ppm which was attributed to the higher ion activity coefficients at the extremely high ionic strength, and hence, a much higher thermodynamic driving force. The rate constants for these two high supersaturation conditions and low PPCA dosages were also calculated and discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。