miR‑155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia

miR-155 通过激活小胶质细胞介导海马神经元细胞的炎症损伤

阅读:5
作者:Xiao-Hua Sun, Ming-Fen Song, Hai-Dong Song, Yu-Wen Wang, Ming-Jin Luo, Li-Ming Yin

Abstract

MicroRNA (miR)‑155 has a crucial role in various cellular functions, including differentiation of hematopoietic cells, immunization, inflammation and cardiovascular diseases. The present study aimed to investigate the roles and mechanisms of miR‑155 in treatment‑resistant depression (TRD). A Cell Counting Kit‑8 assay and flow cytometry were performed to assess the cell viability and apoptosis of microglial cells, respectively. Western blotting and reverse transcription‑quantitative polymerase chain reaction assays were used to evaluate the associated protein and mRNA expression, respectively. The results revealed that miR‑155 reduced the cell viability of BV‑2 microglial cells, and miR‑155 enhanced the expression levels of pro‑inflammatory cytokines in BV‑2 microglial cells. Furthermore, conditioned medium from miR‑155‑treated microglia decreased the cell viability of HT22 hippocampal cells. miR‑155‑treated microglia increased the apoptosis of neuronal hippocampal cells by modulating the expression levels of apoptosis regulator Bax, apoptosis regulator Bcl‑2, pro‑caspase‑3 and cleaved‑caspase‑3. The cell cycle distribution was disrupted by miR‑155‑treated microglia through induction of S phase arrest. Furthermore, the overexpression of suppressor of cytokine signaling 1 reversed the pro‑apoptotic effect of activated microglia on hippocampal neuronal cells. In conclusion, the present results suggested that miR‑155 mediated the inflammatory injury in hippocampal neuronal cells by activating the microglial cells. The potential effects of miR‑155 on the activation of microglial cells suggest that miR‑155 may be an effective target for TRD therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。