Development of Quercetin Solid Dispersion-Loaded Dissolving Microneedles and In Vitro Investigation of Their Anti-Melanoma Activities

槲皮素固体分散体溶解微针的开发及其抗黑色素瘤活性的体外研究

阅读:5
作者:Monsicha Khuanekkaphan, Kesinee Netsomboon, Adryan Fristiohady, Rathapon Asasutjarit

Background

Melanoma is a skin cancer that requires early treatment to prevent metastasis. In particular, the superficial spreading melanoma, excisional surgery with local administration of anti-cancer drugs via microneedles is currently considered a potential combination therapy. Quercetin is a natural flavonoid having activities against melanoma cells. Unfortunately, the therapeutic effect is limited by its poor water solubility. Objectives: This study aimed to develop formulations of solid dispersion-loaded dissolving microneedles (SD-DMNs) of quercetin and to investigate their in vitro activities against melanoma cells.

Conclusions

The optimized Q-SD-DMN has a potential for use in further in vivo studies as a synergistic method of melanoma treatment.

Methods

Quercetin solid dispersions (Q-SDs) were prepared using polyvinylpyrrolidone K30 (PVP) via a solvent technique. The optimized Q-SD was selected for preparing Q-SD-loaded dissolving microneedles (Q-SD-DMNs) using a mold casting method.

Results

Q-SDs had higher water solubility than that of quercetin by 5-10 times depending on the ratio of quercetin-to-PVP. The presence of quercetin in the Q-SD and Q-SD-DMN were in an amorphous form. The obtained Q-SD-DMNs had pyramid-shaped microneedles. Their strength depended on the compositions, i.e., ratios of hyaluronic acid-to-sodium carboxymethylcellulose and the content of Q-SD. An optimized Q-SD-DMN increased the in vitro skin permeation of quercetin compared to that of microneedles containing quercetin (without being processed). From the molecular investigations, the optimized Q-SD-DMN reduced the viability of the A375 cells (melanoma cells) through the induction of cell apoptosis. It suppressed Bcl-2 gene expression and led to a lower content of Bcl-2 in the cells. Conclusions: The optimized Q-SD-DMN has a potential for use in further in vivo studies as a synergistic method of melanoma treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。