Plastidic Δ6 Fatty-Acid Desaturases with Distinctive Substrate Specificity Regulate the Pool of C18-PUFAs in the Ancestral Picoalga Ostreococcus tauri

具有独特底物特异性的质体 Δ6 脂肪酸去饱和酶调节祖先皮科藻 Ostreococcus tauri 中的 C18-PUFA 池

阅读:8
作者:Charlotte Degraeve-Guilbault, Rodrigo E Gomez, Cécile Lemoigne, Nattiwong Pankansem, Soizic Morin, Karine Tuphile, Jérôme Joubès, Juliette Jouhet, Julien Gronnier, Iwane Suzuki, Denis Coulon, Frédéric Domergue, Florence Corellou

Abstract

Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。