Functional phosphoproteomic analysis reveals that a serine-62-phosphorylated isoform of ethylene response factor110 is involved in Arabidopsis bolting

功能磷酸化蛋白质组学分析表明,乙烯反应因子 110 的丝氨酸-62-磷酸化异构体参与拟南芥抽薹

阅读:3
作者:Lin Zhu, Dandan Liu, Yaojun Li, Ning Li

Abstract

Ethylene is a major plant hormone that plays an important role in regulating bolting, although the underlying molecular mechanism is not well understood. In this study, we report the novel finding that the serine-62 (Ser-62) phosphorylation of Ethylene Response Factor110 (ERF110) is involved in the regulation of bolting time. The gene expression and posttranslational modification (phosphorylation) of ERF110 were analyzed among ethylene-response mutants and ERF110 RNA-interfering knockout lines of Arabidopsis (Arabidopsis thaliana). Physiological and biochemical studies revealed that the Ser-62 phosphorylation of ERF110 was closely related to bolting time, that is, the ethylene-enhanced gene expression of ERF110 and the decreased Ser-62 phosphorylation of the ERF110 protein in Arabidopsis. The expression of a flowering homeotic APETALA1 gene was up-regulated by the Ser-62-phosphorylated isoform of the ERF110 transcription factor, which was necessary but not sufficient for normal bolting. The gene expression and phosphorylation of ERF110 were regulated by ethylene via both Ethylene-Insensitive2-dependent and -independent pathways, which constitute a dual-and-opposing mechanism of action for ethylene in the regulation of Arabidopsis bolting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。