An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves

脱落酸-AtNAP转录因子-SAG113蛋白磷酸酶2C调控链控制拟南芥叶片衰老过程中的脱水

阅读:3
作者:Kewei Zhang, Su-Sheng Gan

Abstract

AtNAP is a NAC family transcription factor gene that plays a key role in leaf senescence but its underlying mechanisms are not known. SENESCENCE-ASSOCIATED GENE113 (SAG113), a gene encoding a Golgi-localized protein phosphatase 2C family protein phosphatase, mediates abscisic acid (ABA)-regulated stomatal movement and water loss specifically during leaf senescence. Here we report that SAG113 is a direct target gene of the AtNAP transcription factor. We found that both AtNAP and SAG113 were induced by leaf senescence and ABA. When AtNAP was chemically induced, SAG113 was also induced whereas when AtNAP was knocked out, the ABA- and senescence-induced expression of SAG113 was reduced. These data suggest that the expression of SAG113 is predominantly dependent on AtNAP. Functionally, overexpression of SAG113 restored the markedly delayed leaf senescence phenotype in atnap knockouts to wild type. Yeast (Saccharomyces cerevisiae) one-hybrid experiments and electrophoresis mobility shift assays showed that AtNAP could physically bind to the SAG113 promoter in vivo and in vitro, respectively. Site-directed mutagenesis revealed that AtNAP binds to a 9-bp core sequence of the SAG113 promoter, 5'CACGTAAGT3'. These results indicate that there is a unique regulatory chain, ABA-AtNAP-SAG113 protein phosphastase 2C, which controls stomatal movement and water loss during leaf senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。