Macromolecular composition and substrate range of three marine fungi across major cell types

三种海洋真菌跨主要细胞类型的大分子组成和底物范围

阅读:10
作者:Seth Thomas, Sabine K Lengger, Kimberley E Bird, Ro Allen, Michael Cunliffe

Abstract

Marine fungi exist as three major cell types: unicellular yeasts, filamentous hyphae and zoosporic early-diverging forms, such as the Chytridiomycota (chytrids). To begin to understand the ecological and biogeochemical influence of these cell types within the wider context of other plankton groups, cell size and macromolecular composition must be assessed across all three cell types. Using a mass-balance approach to culture, we describe quantitative differences in substrate uptake and subsequent macromolecular distribution in three model marine fungi: the yeast Metschnikowia zobellii, the filamentous Epicoccum nigrum and chytrid Rhizophydium littoreum. We compared these model cell types with select oleaginous phytoplankton of specific biotechnological interest through metanalysis. We hypothesise that fungal cell types will maintain a significantly different macromolecular composition to one another and further represent an alternative grazing material to bacterioplankton and phytoplankton for higher trophic levels. Assessment of carbon substrate range and utilisation using phenotype arrays suggests that marine fungi have a wide substrate range. Fungi also process organic matter to an elevated-lipid macromolecular composition with reduced-protein content. Because of their size and increased lipid composition compared to other plankton groups, we propose that fungi represent a compositionally distinct, energy-rich grazing resource in marine ecosystems. We propose that marine fungi could act as vectors of organic matter transfer across trophic boundaries, and supplement our existing understanding of the microbial loop and carbon transfer in marine ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。