SHIP1 inhibits cell growth, migration, and invasion in non‑small cell lung cancer through the PI3K/AKT pathway

SHIP1 通过 PI3K/AKT 通路抑制非小细胞肺癌细胞生长、迁移和侵袭

阅读:8
作者:Qiaofen Fu, Yuhui Huang, Chunlei Ge, Zhen Li, Hui Tian, Qiaolin Li, Hongshuai Li, Ruilei Li, Xingyu Tao, Yuanbo Xue, Ying Wang, Guanqin Yang, Weiyi Fang, Xin Song

Abstract

Src homology 2‑containing inositol‑5'‑phosphatase 1 (SHIP1) serves a vital role in the occurrence and development of hematological tumors, but there is limited knowledge regarding the role of SHIP1 in various solid tumors, including lung cancer. In the present study, the aim was to investigate the expression and functional mechanisms of SHIP1 in non‑small cell lung cancer (NSCLC). The Gene Expression Omnibus database demonstrated that SHIP1 had low expression in NSCLC. Further studies using fresh tissues and cell lines also confirmed this observation. Biological function analyses revealed that SHIP1 overexpression notably suppressed cell growth, migration and invasion in vitro and in vivo in NSCLC. Mechanistic analyses indicated that SHIP1 inactivated the phosphoinositide 3‑kinase (PI3K)/AKT pathway to suppress signals associated with the cell cycle and epithelial‑mesenchymal transition. In clinical specimens, reduced SHIP1 is an unfavorable factor and is negatively associated with the T classification, N classification and clinical stage. Furthermore, patients with low SHIP1 levels exhibited reduced survival rate, compared with patients with high levels of the protein. Notably, the promoter of the SHIP1 gene lacks CpG islands, and the suppression of SHIP1 expression is not associated with epidermal growth factor receptor or Kirsten rat sarcoma mutations. Thus, the present study demonstrated that SHIP1 inhibits cell growth, migration and invasion in NSCLC through the PI3K/AKT pathway. Additionally, reduced SHIP1 expression may be an unfavorable factor for NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。