A pH-Sensitive Fluorescent Chemosensor Turn-On Based in a Salen Iron (III) Complex: Synthesis, Photophysical Properties, and Live-Cell Imaging Application

基于 Salen 铁 (III) 复合物的 pH 敏感荧光化学传感器开启:合成、光物理性质和活细胞成像应用

阅读:6
作者:Nicole Nilo, Mauricio Reyna-Jeldes, Alejandra A Covarrubias, Claudio Coddou, Vania Artigas, Mauricio Fuentealba, Luis F Aguilar, Marianela Saldías, Marco Mellado

Abstract

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)2Br, (C1)), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex C1 were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH- was added. So, we determined the limit of detection (LOD = 3.97 × 10-9 M), stoichiometry (1:1), and association constant (Kas = 5.86 × 103 M-1). Using DFT calculations, we proposed a spontaneous decomposition mechanism for C1. After characterization, complex C1 was evaluated as an intracellular pH chemosensor on the human primary gastric adenocarcinoma (AGS) and non-tumoral gastric epithelia (GES-1) cell lines, finding fluorescent signal activation in the latter when compared to AGS cells due to the lower intracellular pH of AGS cells caused by the increased metabolic rate. However, when complex C1 was used on metastatic cancer cell lines (MKN-45 and MKN-74), a fluorescent turn-on was observed in both cell lines because the intracellular lactate amount increased. Our results could provide insights about the application of complex C1 as a metabolic probe to be used in cancer cell imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。