Total flavonoids of Selaginella tamariscina (P. Beauv.) Spring ameliorates diabetes-induced acute lung injury via activating Nrf2/HO-1

卷柏总黄酮通过激活 Nrf2/HO-1 改善糖尿病引起的急性肺损伤

阅读:8
作者:Lina Chen, Guosu Xiao, Zhou Yu, Niwen Huang, Yiju Cheng

Conclusion

The study findings demonstrate that TFST can suppress oxidative stress by modulating the Nrf2 pathway and up-regulating HO-1 activity, thereby ameliorating diabetes-induced acute lung injury.

Methods

Male mice weighing 20-25 grams were divided into four groups: a control group, a diabetic group, a diabetic group treated with TFST, and a diabetic group treated with TFST and ML385. Various biological specimens were collected for analysis, including bronchoalveolar lavage fluid (BALF), blood, and tissue samples. These were subjected to a range of assessments covering hematological and BALF parameters tumor necrosis factor-alpha (TNF-α), interleukin-6 [IL-6]), biochemical markers (malondialdehyde [MDA], superoxide dismutase [SOD], glutathione peroxidase [GSH], Nrf2, and HO-1 levels), along with histopathological evaluations.

Results

Pre-treatment with TFST demonstrated a significant decrease in pulmonary tissue damage, evidenced by decreased wet-to-dry (W/D) lung ratios (P<0.001), reduced lung injury scores (P<0.0001), and lower levels of TNF-α, IL-6 (P<0.0001), as well as oxidative stress markers like MDA (P<0.05). Moreover, there was an elevation in the activity of anti-oxidative enzymes, specifically SOD and GSH (P<0.05), coupled with an enhanced expression of Nrf2 and HO-1 in the diabetic group (P<0.01).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。