CD33 is downregulated by influenza virus H1N1pdm09 and induces ROS and the TNF-α, IL-1β, and IL-6 cytokines in human mononuclear cells

CD33 被流感病毒 H1N1pdm09 下调,并在人类单核细胞中诱导 ROS 和 TNF-α、IL-1β 和 IL-6 细胞因子

阅读:5
作者:Silvia Guzmán-Beltrán, Maria Teresa Herrera, Martha Torres, Yolanda Gonzalez

Abstract

The influenza A virus (IAV) H1N1pdm09 induces exacerbated inflammation, contributing to disease complications. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), favor an inflammatory response that aids viral replication and survival. A pathway by which spontaneous TNF-α production occurs involves either the reduction of Siglec-3 (CD33) levels or the absence of its ligand, sialic acid. Influenza virus uses sialic acid to enter cells by reducing their expression; however, the role of CD33 in IAV H1N1pdm09 stimulation and its relationship with inflammation have not yet been studied. To evaluate the role of CD33 in proinflammatory cytokine production in IAV H1N1pdm09 stimulation, peripheral blood mononuclear cells from healthy subjects were incubated with IAV H1N1pdm09. We observed that the infection caused an increase in the mRNA expression of proinflammatory cytokines such as TNF-α, interleukin (IL)-1β, and IL-6 and a significant reduction in CD33 expression by monocytes at an early stage of infection. Additionally, suppressor of cytokine signaling 3 (SOCS-3) mRNA expression was upregulated at 6 h, and reactive oxygen species (ROS) production increased at 1.5 h. Moreover, a significant reduction in CD33 expression on the cell surface of monocytes from influenza patients or of IAV H1N1pdm09-stimulated monocytes incubated in vitro was observed by flow cytometry. The results suggest that the decrease in CD33 and increase of SOCS-3 expression induced by IAV H1N1pdm09 triggered TNF-α secretion and ROS production, suggesting an additional way to exacerbate inflammation during viral infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。