Temperature and Infill Density Effects on Thermal, Mechanical and Shape Memory Properties of Polylactic Acid/Poly(ε-caprolactone) Blends for 4D Printing

温度和填充密度对用于 4D 打印的聚乳酸/聚(ε-己内酯)共混物的热性能、机械性能和形状记忆性能的影响

阅读:6
作者:Ang Li, Xin-Gang Chen, Lan-Ying Zhang, Yang-Fei Zhang

Abstract

Polylactic acid (PLA)/poly(ε-caprolactone) (PCL) blends have exhibited good shape memory properties and degradable characteristics in various 4D printing fields such as biomedicine, flexible electronics, and soft robotics, where the service temperature fluctuates easily by environment temperature and polymer characteristics. In this work, printed PLA/PCL 4D samples with different infill densities were prepared by material extrusion printing of pre-extruded filaments and characterized under different temperatures. The results show that the microstructures of printed samples are not influenced by printing process and have similar unique orientation as that of filaments. The thermal properties are stable and show obvious phase transition temperatures, while the mechanical properties decrease slightly in low temperature region and then decrease rapidly when temperature is over 60 °C. The increase in infill density can further improve the storage modulus more than 40% and have no significant influence on the thermal properties. The printed samples also exhibit good shape memory performances with fast recovery speeds less than 22 s. Furthermore, a two-step model is provided to predict the effective modulus of printed PLA/PCL samples and agrees well with experimental data. The results prove that temperature and infill density have different influences on the thermal, mechanical and shape memory properties of PLA/PCL blends.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。