Identification of key immune-related genes and potential therapeutic drugs in diabetic nephropathy based on machine learning algorithms

基于机器学习算法识别糖尿病肾病关键免疫相关基因及潜在治疗药物

阅读:6
作者:Chang Guo, Wei Wang, Ying Dong, Yubing Han

Background

Diabetic nephropathy (DN) is a major contributor to chronic kidney disease. This study aims to identify immune biomarkers and potential therapeutic drugs in DN.

Conclusion

This study identified 4 hub immune-related genes (EGF, PLTP, RGS2, PTGDS), as well as their expression profiles and the correlation with immune cell infiltration in DN.

Methods

We analyzed two DN microarray datasets (GSE96804 and GSE30528) for differentially expressed genes (DEGs) using the Limma package, overlapping them with immune-related genes from ImmPort and InnateDB. LASSO regression, SVM-RFE, and random forest analysis identified four hub genes (EGF, PLTP, RGS2, PTGDS) as proficient predictors of DN. The model achieved an AUC of 0.995 and was validated on GSE142025. Single-cell RNA data (GSE183276) revealed increased hub gene expression in epithelial cells. CIBERSORT analysis showed differences in immune cell proportions between DN patients and controls, with the hub genes correlating positively with neutrophil infiltration. Molecular docking identified potential drugs: cysteamine, eltrombopag, and DMSO. And qPCR and western blot assays were used to confirm the expressions of the four hub genes.

Results

Analysis found 95 and 88 distinctively expressed immune genes in the two DN datasets, with 14 consistently differentially expressed immune-related genes. After machine learning algorithms, EGF, PLTP, RGS2, PTGDS were identified as the immune-related hub genes associated with DN. In addition, the mRNA and protein levels of them were obviously elevated in HK-2 cells treated with glucose for 24 h, as well as their mRNA expressions in kidney tissues of mice with DN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。